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ABSTRACT

‘Several deconvolution techniques (1-7) and a novel method
herein presented, are compared in relation to their ability for
correcting size exclusion chromatograms for the undesirable effect
of instrumental broadening. Such methods are evaluated on the same
computer, and through a "synthetic" example of known solution.
Methods based on the frequency domain are only applicable to uni-~
form deconvolution problems with stationary statistics. However,
in the herein presented heuristic method (based on the Wiener
filter in the frequency domain), it is possible to relax this last
restriction, and generate solutions that are equivalent +to
considering signals with time-varying statistics. The evaluated
techniques are compared on the basis of quality of results, com-
putational considerations and adjustment facility. Stochastic
techniques provide the best (and nearly identical) numerical solu-
tions. This is mainly due to their increased facility to introduce
"a priori" information about the expected solution. As a counter-
part, stochastic techniques are conceptually more complex, more
difficult +to implement, and normally involve more elaborate
adjustment procedures.

(*) To whom correspondence should be sent.
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INTRODUCTION

Resolution in size exclusion chromatography (SEC) is relati-
vely high at low molecular weights (i.e., at high retention times
or retention volumes), but increasingly imperfect at higher mole
cular weights (i.e., lower retention times or volumes). Imperfect
resolution implies that a whole distribution of molecular sizes is
instantaneously present in the detector cell, There sare many
reasons for this to happen, the most important being axial disper-
sion in the fractionation columns. While axial dispersion induces
symmetrical spreading; finite detection cell volumes, inhomoge-
neities in the column packing, and end-column effects, all

generate skewed broadening.

The instrumental broadening calibration (i.e., the broadening
function specification) is complicated, because both the spreading
breadth and its skewness are, in general, a function of the mean
retention volumes of the individual sample components. In what

follows, the spreading function will be assumed known.

In practice, most methods of correction for instrumental
spreading are based on Tung's integral equation (8):

o0

z{t) = | glt,r1) ult) dx (1)

-

where t, 1t both represent retention time (or volume); z(t) is the
measured chromatogram; g{t,T) is the spreading function, or nor-

malized set of chromatograms of hypothetical monodisperse polymers
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with different retention times t; and u(t) is the chromatogram,

corrected for instrumental broadening.

The spreading g(t,t) may be thought as a set of time~varying
and noncausal impulse responses, with the impulses applied at dif-
ferent values of T. The function is 1in general time-varying
(vecause the shape of g{t) depends on t1); and is also assumed non-
causal (with the hypothetical impulses applied at the mean values
of the individual spreadings), to ensure that the mean of u(t)
will coincide with that of z(t). Thus, eqn. (1) may be considered
a filtering operation of signal u{t) through a time-varying and
noncausal linear filter represented by g(t,r). The deconvolution
is an inverse filtering operation, that aims at estimating the

filter input, given its output and the filter characteristics.

Two simplifications in relation to eqn. (1) may be

considered:

1) In the case of oligomers with multi-peaked chromatograms, the

following discrete function is preferable:

z{k) =.
i

wi gi(k) (2)
1

BN~

where n is the number of chemical species (e.g.<10); Wy is the
area (proportional to the mass) of the peak corresponding to
the i-th species; and gg is the broadening (assumed known) for
the same species. In this case, the discrete distribution wy,
of weights vs. molecular species, may be obtained through a
least-squares fit procedure involving, for example,

Gaussian/Lorentzian distributions.
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2)

If the chromatogram is narrow, then the spreading may be
assumed uniform (or time-invariant). In this case, eqn. (1)
transforms into a uniform convolution integral, with g(t,t)

replaced by g{t-t).

Eqn. (1) was originally developed for linear homopolymers and

mass detectors. This equation and its associated spreading func-

tion are also applicable to other situations, however:

1)

is

On-line low-angle laser light-scattering detectors produce
signals proportional to the product of the instantaneous mass
and its corresponding molecular weight. Assume that a strictly
monodisperse sample in the molecular weight M could be analysed
through such a detector. Then, since M 1is constant, the
hypothetical chromatogram would be proportional to the eluting
mass only; and therefore proportional to the corresponding g(t)

standard spreading function.

Consider the estimation of the combined distribution of molecu-
lar weights and chemical composition in 1linear copolymers,
through standard dual detection (i.e.: differential refrac-
tometry plus absorbance spectrophotometry at a single wave
lenght). In this case, it may be shown (9), that two indepen-
dent deconvolution operations involving the standard spreading
g{t,t) may ve applied to each signal, prior to the calculation

of the combined distribution.

For digital computations, the discrete equivalent to eqn. (1)

required:
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ko=d
z{k) = ) alk,ky) ulky) (3)

ko==c
where k, ko are the discrete counterparts of t and T, respective-
1y; z(k), u{k) and glk,k,) are now discrete functions; and [-c,d]

is a wide enough support, that allows to include all nonzero

values of z(k).

Ideally, g(k,k,) should be defined for the whole working
range of the given column set; and Fig. 1 illustrates a typical

spreading function.

The process of ean. (3) may be considered stochastic by

assuming z(k) contaminated by an additive measurement noise (L):

z(k) = ) alkky) ulky) + v(k) = y(k) + v(k) (&)
ky=-C

where y(k) is a theoretical noise-free chromatogram; and v(k) may
be considered a zero-mean noise of variance r. (This last para-
meter can be estimated from the chromatogram baseline high-
frequency noise, and it seems reasonable +to consider it

time-invariant).
In vectorial notation, eqns (3,4) respectively provide:

z= Gu (5)
and

(6)

z=y+

i<
"
[}

|=
+
<

where G is a matrix; and Z, U, v, and y are column vectors.
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FIGURE 1: Typical nonuniform spreading function, with indication
of the smallest possible G matrix, for the shown chroma-
togram range.

Call n the number of nonzero elements of Z, ¥, v; and p the
number of nonzero elements of u. In general, n>p; and therefore

the smallest possible G matrix is:

[ 2(0,0) +vv g(0,3) +.v g(0,0) |

G = LT () . s (wep) (1)

g(n:O) . . . g(n:p)J

where each j-th column contains the broadening due to an impulse

applied at (J,3).
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Considering eaqns (5,7), a least-squares estimation for u is

provided by:
u = (T g)-1 T z (G: nxp ; n>p) (8)

where symbol "~" indicates estimated value. When for simplicity, G

is adopted (nxn), then eqn. (8) yields:

= 61z (G: nxn) (9)

|s >

For nonuniform spreadings, the elements of G must be selected
according to the chromatogram retention time range. For example,
in Fig. 1 the elements of the square G matrix corresponding to the

observed chromatogram range are indicated.

The use of "minimum size" (nxp) or (nxn) G matrices simplify
the inversions in egqns (8) and (9), but such operations are, in
general, inapplicable to other chromatogram ranges. Alternatively,
G may be expanded to cover the whole fractionation range. In this
case, the relatively more complex inversion operations may be
solved once (and possibly off-line); and then many chromatograms
may be processed through the resulting matrix. Variations of this
idea can be implemented in most of the studied deconvolution tech-

niques.

The estimation of u via eqns (8) or (9) would be feasible
were it not for the numerical ill-conditioning of such operations.
These difficulties are 1indicated by high wvalues of the con-

ditioning number, defined as the ratio between the moduli of the
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largest to the smallest eigenvalue of (CTTG)“1 or G-, In general,

large conditioning numbers are observed in SEC problems.

Deconvolution problems are common in science and technology,
and appear for example, when a sensor acts as a low-pass filter of
the signal it intends to measure. In the particular case of SEC,
two approaches have been proposed (10). The "analytical" approach,
is based on modelling the broadening process at detection cell
level, e.g. (11); and will not be considered in this work. All of
the evaluated techniques fall into the so-called "phenomenolog-
ical™ approach, that considers the chromatograph as a "black box",

and attempts a direct numerical inversion.

The analyzed techniques will be indicated as Methods I to VI,
and their principal characteristics are summarized in Table 1.
Brief descriptions of Methods I~V follow. The here proposed

Methods VI, are described further below.

Methods I. Difference Functions Techniques (1)

Ref. (1) describes two iterative procedures that basically
consist of sequentially applying the convolution operation to the
original measurement and related functions. Both techniques are
conceptually very similar; and for this reason, only the so-called
Method 1 will be here described. Define the following set of dif-
ference functions:

ko=
Azi(k) = Azi-l(k) - k) g(k,ko) Azi-l(ko) ;3 (i=1,2,...)

(o]



X x ps X (utemop *baaJ) J99TTJ JISUSTM  °*IA
X X X X (9) (utewop SWE3) JIS93TTJ JISUSTH *A
X X X X (§) 293713 uedT®y °AI
X X X X (%°€) waogsuea] ASTJNOL ISB *III
b4 X X X (L°2) seaenbs uwsw Po3dTaAISSYy ‘Il
X X x X (T) suotrjounyg SoUSIBIII] T
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with (10)

Azgo(k) = z(k)

It can be shown that, as iteration number i+e, then Azi(k)+0 and:

k) = Az (k) (11)

o~ g8

i=1
In practice, highly oscillating solutions are generated for
sufficiently high values of i, and therefore some criteria for the

calculation time specificacion is required. Methods identified as

1 and 2 in Ref. (1), will be here renamed Ia and Ib, respectively.

Methods II. Restricted Least Squares (2,7)

Eqn. (8) represents an unrestricted minimum squares solution,
in the sense that it minimizes the time-average variance of the
measurement estimation error z, defined as follows:

we> = BEL ) ; (BiE)=0) (12)

(13)

[E=F

z=2-G

where < > indicates time-average; and E{ } "expected value of". A
numerically better-conditioned deconvolution is obtained if a

minimum "energy" restriction is added to eqns (12,13), providing:
J= E@2T z + 8 (07 4 - ug)} (14)

where J is a new objective functional; and B8, u, are positive
constants. In this case, the optimal estimate for the deter-

ministic model of eqns (5,7) results (12,13):
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u= (Te+snaTz  ;  (g0)  (15)

where the "damping factor" 8 is an adjustable parameter. The term

BI ensures the positive definiteness of (GTG + BI).

An alternative solution, is via the singular wvalue decom~
position technique (14-16). Call Ays with j=1,...,p, the singular
values of G; defined as the positive square roots of the eigen-

values of GIG. Matrix G is first decomposed as follows:
= wqUVvT (16)

where Q is a "diagonal” (nxp) matrix containing the singular
values of G at its (3jxj)-elements; and W, V are (nxn) and {(pxp)
orthogonal matrices whose columns ¥y and vy are the eigenvectors

of GGT and GTG, respectively. The optimal restricted solution

results:
“ b A
i v@TQrp DT W= ) oo (——) v
3=1 A2 + B
J
with (17)
o = ¥z

The method proposed in (2), is based on an equivalent
expression to eqn. (17). Solutions via eqns (15) and (17) will be

identified as Methods IIa and IIb, respectively.

Method III. Fast Fourier Transform (FFT) Technique (3,4)

With uniform spreading, eqn. (3) reduces to:

ko=d
z(k) = ) g(k-kg) ulkg) (18)
ky=-C
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Call 2{m), G(m) and U(m) the Discrete Fourier Transforms
(DFT) of =z(kx), g(k) and u(k), respectively; where m is the
discrete frequency. The FFT algorithm, originally described in
(17), is a highly efficient method for numerically evaluating the
DFT of a time signagl, or inversely a time signal from its DFT. In
the frequency domain, eqn. (18) yields Z(m)=G(m)U(m), and
therefore U{m)=Z{(m)/G{m). As Dbefore, a restricted solution is

preferable (4):

Ulm) = ég:; for m < m,
R (19)
Ulm) = 0 for m > m,

where m, is a critical frequency that must be adequately selected.
The corrected chromatogram may be obtained as follows: a) calcu-
late Z{m) and G(m) by FFT of z(k) and g(k); b) obtain ﬁ(m) from

eqn. (19); and c¢) antitransform #(m) via the FFT.

The idea behind eqn. (19) is that the high frequency calcula-
tion noise introduced by very low values of G(m), is eliminated by
appropriate selection of m, in the| U(mﬂ plot, where "I | " indi
cates modulus. Above such frequency, U{m) is set to zero, without

loss of valid information.

Methods IV. Optimal Smoothers based on the Kalman Filter (5)

The input-output description of eqn. (U4) is proven to be
equivalent to the following linear, discrete, time—varying state-

space model {(5):
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[ xl(k+1)_ (0 1 0 .. 0 0] —xl(k)_ [ o]
. 0 0 1 .. 0 © : 0
. . .o . . (20)
. =l ¢« « . e . . + . ) wik)
' 0 0 0 .. 0 1 ' 0
xg{k+1) |0 0 0 .. 0 8 xp (k) 1J
S— b ~ e —
x(k+1) F x(k) b
and
z(k) = bT(k) x(k) + v(k) = y(k) + v(k) (21)

where x(k) is the instantaneous state vector; element § of matrix
F can be either 0 or 1; w{k) is an hypothetical zero-mean white-
noise input of time-varying variance q(k); v(k) is a zero-mean
white noise of constant variance r; and ET(k) is a time-varying
vector, appropriately constituted by the elements of g(k,ko), in
such a way that the "output” eqn. (21) alone becomes exactly
equivalent to the original model of egn. (4). (Egqn. (20) is
required to complete the state-space model, and to allow a better
algorithm adjustment).

Call u{k) the corrected chromatogram, assumed exactly known
in the filter derivation. The following can be proven: a) u{k)
coincides with the (d+1)-th element of x(k), where delay d is spe-
cified in eqn. (4); b) when 6=0, then u(k) is simply a delayed
version of w(k), and therefore it is also assumed a white noise;
¢) when 8=1, then u(k) is equivalent to a random walk process,
with autocorrelation in at least two consecutive values; and d)

through an appropriate selection of parameter & and of function
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a(k), "a priori" information on the expected shape of u(k) may be

introduced.

The Kalman filter is an optimal estimator of i(k) (and con-
sequently of u(k)) given the state-space model, the measurement
z{k) and the statisties for w{k) and v(k), (18). In series with a
recursive smoother, the combination of filter/fixed-interval
smoother provides optimal estimates for u{k), in the sense of
minimizing the time-average variance of the input estimation error

k), i.e.:
<oq)> = BET(0) 40} 5 (B} = 0)  (22)
alk) = ulk) - u(x) (23)

Due to the particular structure of eqn. (20), it may be further
proven that the Kalman filter estimate alone provides a suboptimal
fixed-lag smoother estimate, which in this case also coincides
with the estimation by the full fixed-interval smoother. (This
fact not well exploited at the time of the original publication
(5), has later allowed us to reduce the computation times by more

than one order of magnitude).

Call x(k/M) the "conditional estimate of x at time k, given
the measurements z up to time M". For example, the estimation

error covariance matrix of E_(k/k) is:
2(k/k) = E{lx(k) - x(k/K)][x(k) - x(x/%)]T} (24)

where x(k) is the "true" state value. A simplified version of the

recursive Kalman filter follows:
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I(k+1/k) = F £(k/k) FT + b q(k) bT (25)
o2(k) = BT(k) r(i+1/k) hk) + ¢ (26)
t(k/x) = £(k/k-1) {I - h(k) [OS(k)]‘l nT(x) sT(k/k-1)} (27)
2(k+1) = T(e#1/k) h(k+1) [nT(k+1) z(k+1/k) n(k+1) + r]™1  (28)
z(k+1) = z(k+1) - hT(k+1) F x(k/k) (29)
®(k+1/k+1) = F x(k/k) + 2(k+1) z(k+1) (30)

with
%(0/0) = n(0) [BT(0) h(0) + rl™* 2(0) (31)

where 2(k) is the filter gain; z(k) is the "innovations" sequence

or measurement estimation error, equivalent to the definition of

2
egn. {13); and oz(k) is its corresponding time-varying variance.

The given algorithm requires the specification of parameters
§ and r, and of function q(k). Some considerations on their deter-
mination follow.
a) Adjustment of element & of egn. (20). In the more "normal"
case of &8=0, then the maximum solution flexibility is retained,
but a relatively more noisy recuperation is to be expected. When
6=1, some autocorrelation or "smoothness" is expected in the solu-
tion. This stabilizes the numerical calculation and reduces the
area error defined by egn. (43) below, while practically not
distorting the recuperated chromatogram. The disadvantage is that

a{k) becomes more indirectly related to u(k).
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b) Adjustment of r, the constant variance of v(k). This parameter

may be directly associated to the chromatogram baseline noise.

c) Adjustment of q(k). When 6=0, then q{k) may be interpreted as a
time-shifted version of the time-varying variance of u(k), our
unknown. Since this last function is expected to be "similar" to
the measurement z(k), then q(k) may be taken, to a first approxi-

mation, proportional to z2(k); i.e.:
a(k) = cp z%(k+c+l) 5 (c1>0) (32)

where ¢ is defined in eqn. (h); and ¢j is an adjustable gain. For
simplicity, q(k) may be alternativaly assumed constant, but this
considerably reduces the power of the technique, by inducing the
algorithm to produce flat and smoother solutions. When 6&=1 is
adopted, then it may be shown that q{k) is a time-shifted version
of +the time-varying variance of the difference function
su(k)=u(k+1l)~u(k). To avoid the noise introduced by this dif-
ferencing operation, the following "smoothed" relationship was
found adequate for practical proposes:

a [Aﬁ(k+c+1+i)]2

= —— e e 3 3
a(k) e ig_a ool E:g?))) (33)

where Au(k) is any estimate of Au(k); cp is an adjusteble gain;

and (2a+l) is the number of averaged points at each step.

Consider now the following two-step procedure for obtaining

(k). In the first step (that we shall call Method Iva), a
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"normal" estimation involving eqn. (32) in generated. This func-
tion, indicated by ﬁ(k)l IVa® in turn allows an enhanced estims
tion of q(k) via ean. (33), with afi(k) replaced by Ali(k) IVa®
Then, introducing this new q(k) into the Kalman filter, a second
(and better) estimate of u(k) may be produced. We shall name this

two-step procedure Method IVb, and ibs corresponding estimate

BN e

The innovations sequence z(k) provides complementary infor-
mation for the solution evaluation: this function should match its
"a priori" calculated time~varying variance ozz(k). For example, if
Z(k) is assumed =zero-mean Gaussian white, then it should 1lie
within the + cz(k) bounds for approximately two-thirds of the
chromatogram time range. (In certain "adaptive" Kalman filters,
this matech allows to automatically adjust in general time-
varying variances of w(k) and v(k); but has never yet been applied

to SEC problems.)

Method V. Wiener Filter in the Time-Domain (6)

Consider the stochastic model of egns (6,7), together with
the functional of eqn. {22). Assume the following: a) input u is
uncorrelated with noise v; and b) the expected values for the
stochastic variables u and z are zero. The following may be

proven:
u= I, 6T {a 5, 6T + N z (34)

where IL,;, Iy are symmetric covariance matrices corresponding to u

and v, respectively. If these variables are assumed white noises,
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then Iy and I, are diagonal matrices. If as before, the variance
of v 1is assumed time-invariant, and 5_2 is considered a first
approximation to the variance of u, then the following may be

written:
I, = r 1 (r: scalar) (35)
£y = cp diag [22(1), «uv, z2(n)] (e1>0) (36)

Note that egn. (36) is equivalent to eqn. (32). Further
simplifying eqn. (36) into: I;=qI, (q: scalar), and adopting egn.
(35); then egn. (34) becomes equivalent to egn. (15). If u were
considered a random walk process instead of a white noise, then a
tridiagonal I, matrix should be defined; but it is unclear how to

specify its elements.

The innovations sequence may be obtained through eqn. (13),

since v 1is zero-mean. Also, its corresponding covariance matrix

77 may be calculated, and the +gj bounds compared with Z. This
check must be performed after the estimation of u, however; and

involves rather elaborate matrix operations.

In comparison, Method V 1is conceptually more direct and
simple than Method IV, but it also presents the following
limitations: a) large matrices are involved; b) it is more dif-
ficult to introduce “smoothness" into the expected solution
(previously resolved by setting &=1); and c) the innovations
matching test involves an added computational cost. Finally, it

should be emphasized that for Methods IV and V, the estimation
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i{k) depends on the ratio r/q(k), rather than on its individual
settings. However, absolute values of r and gq{k) must be con-

sidered when the innovations matching test is required.

The above-described deconvolution techniques have been pre-
viously evaluated in a qualitative manner. In this work, such
techniques (together with the method presented below) are quan-—
titatively compared, utilizing the same computer and a synthetic
example analyzed in Refs (1,5,6,7,19). Synthetic examples have the
advantage that their exact solution is "a priori" known; and are
based on the assumption that the convolution operation is vir-
tually exact, thus allowing the obtention of a perfectly accurate

noise-free "measurement" y(k).

METHODS VI. WIENER FILTERS IN THE FREQUENCY DOMAIN

Consider the time-invariant but stochastic model:

ko=d
z(x) = )  glk-ky) ulky) + v(k) (37)
ko=-c
and assume the following hypothesis: a) u(k), z{k) and v(k) are
all considered zero-mean stochastic variables; and b) no correla-

tion exists between u(k) and v{(k). The minimization (in the fre-

quency domain) of the functional of eqns (22,23) yields:

O(m) = G(m) — 2w) (38)
o(m) Tlm) + LT

¢ (m)
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where G(m), 72(m) and G{m) are the DFT's of a(k), z(k) and g{k),
respectively; G{m) is the complex conjugate of G{m); and ¢4 (m),
¢u(m) are the power spectra of v(k) and u(k), respectively, that
must be adequately specified. After calculating 6(m) through eqn.
(38), then (k) may be obtained by inverse FFT. Note that for

¢y(m)=0, ean. (38) reduces to the deterministic case of eqn. (19).

Eqn. {38) was originally developed by N. Wiener in the 1940's
{20), beginning with the important field of optimal filtering.
However, and as far ag the authors are aware, it has never before

been applied to SEC problems.

If v(k) and u(k) were known, then the real functions ¢,(m)
and ¢,(m) could be evalusted by FFT of their corresponding auto-
correlation functions. Consider v(k) a stationary white noise, and
that u{k) may be approximated by z(k). In this case, ¢,(m) is a
constant, while ¢y(m) is a decreasing function of m. In eqn.
(38), the ratio ¢y(m)/¢y{m) must be adjusted, rather than the
individual power spectra; and from the previous argument, one
would expect this ratio to be an increasing function of m. In

practice, it has been found convenient to take:

¢y (m)

= 2
¢y (m)

c3 m ; (e3>0)  (39)

where c3 1is a single adjustment parameter. Eqn. (38) may be

finally written:

G(m) = G(m)

Z(m) (ko0
(o] 2+ e )
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The modulus of G{m) is a decreasing function of m; and

|G(Oﬂ =1 because g(k) is normalized. Therefore,

G(m)| <1 for all
m; and above a certain frequency, l G(mﬂ 20, In egn. (L0}, the
C3m2 term ensures that excessively low values are never produced
in the denominator. However, note that to avoid distorting #(k),
' G(mﬁ 2>><:3m2 should be verified for all values of m. (For exam
ple, if the highest calculated frequency is m=100, then

C3=10‘5 ensures that c3m2<10'1.)

Egn. {(40) 1is only applicable to problems with uniform
spreading and stationary statistics. This last restriction may be
circumvented, however, by repeatedly solving eqn. (40) with

varying values of cg3, through the following heuristic formula:

(k=1,2,...,N);

- Glm)
Uy (m) = z(m) ; {(m=1,2,...,N); (41)
| o(m)] ® + e3(x) n? (e3(k)>0)
with
ch
for z(k) >0 ;3 (c}>0)
c3(k) =4 22(x)
(k2)
e3 for z{(k) =0 ; (e3>0)

where N is the total number of chromatogram points, and also the
number of discrete frequencies in the DFT; c3 is the same coef-
ficient as in eqn. (L0); and c), is a second adjustment parameter.
The correction is performed as follows: a) calculate Z(m) and G(m)
by FFT of z(k) and g{k); b) obtain Gk.(m) from eqns (41,42); ¢)
antitransform 6k'(m) to obtain the bivariate function Gy '(k); and

d) generate U(k) by selecting the elements of Uy ' (k) with k'=k.
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The proposed technique is in principle, less powerful than
Method V, because: a) it is limited to uniform deconvolutions; and
b) no "physical" interpretation can be ascribed to ec3 or c3(k),
thus complicating their setting. It has the advantage of not

requiring matrix inversions, however.

The use of eqn. (40) with a constant c3 we shall call Method
VIa; and should, in theory, provide identical results to consider-
ing q(k)=q=constant in Methods IV and V. The estimation via eqns

(41,42) will be identified as Method VIb.

COMPARISON CRITERIA

The different deconvolution techniques are evaluated on the

basis of quality of results, adjustment considerations and com-

putational requirements.

Quality of Results

Clearly, this is the most important performance indicator.
In a real example, it is in general impossible to select the best

from several solutions. However, the following characteristics can

always be compared:

a) Non-negativeness. Deconvolutions with negative oscillations
must be discarded, because a chromatogram cannot represent

negative masses.

b) Equal areas. The area under a chromatogram is proportional to

the total sample mass. Therefore, areas under the original and
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the corrected chromatograms should coincide. Note that to this
effect, the individual spreading functions should be adequately
normalized. It was found convenient to evaluate the chroma-

togram area error through:
€, = ——2 . 100 (43)

with A,=g z(k); and A3=I u(k).
k k

Recuperation of the measured chromatogram. The error functions
associated to the estimation of z{(k), or innovations %(k), are
defined by eqn. (13) or ean. {29). In all deconvolution tech-
niques, one expects such error functions to be zero-mean white

sequences; this indicating that no deterministic biases are

being introduced into the solution. The time-average value of
the square of the innovation sequence is the scalar <é§(k)>,
defined by eqn. (12). Tt should be emphasized that a low
<3%(k)> is only a necessary but not a sufficient condition for
a good input recuperation. In fact, the lowest (near zero)
values of this functional are generally observed for highly
oscillatory solutions, with large negative peaks. This is to be
expected, since <c%(k)> is explicitly minimized in the
unrestricted eqns (8,9). The main adjustment criterion for
Methods I-III and VI is the minimization of <u§(k)> through a
nonnegative solution. In contrast, the optimality criterion for
Methods IV and V, is a good match between the innovations and

its "a priori" expected statistics.
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d) Recuperation of the "true" input u(k). The main advantage of
synthetic examples is that the corrected "chromatogram" may be
directly compared to the "a priori" known solution. A numerical
indication of such fit is provided by the average variance of
the input estimation error <c%(k)>, defined by eans (22,23).
This performance index is explicity minimized in Methods IV-VI.
A closely-related quality indicator is the relative error be-
tween the areas under u(k) and G(k), defined by:

£ utx) - 800 |

ey = . 100 (L)
3 | u) |

Adjustment Considerations

Simpler methods offer the advantage of practically not
requiring any adjustment. Thus, in Methods I, one must only decide
when to stop the iterations; and in Method III, a critical fre-
quency must be selected at an intermediate stage of the calcula-

tion.

Methods II have a single "real" adjustable parameter (the
damping factor B); but no "physical” interpretation aids for its

specification.

The more complicated stochastic Methods IV-VI are equivalent
techniques that also require of a more sophisticated adjustment.
They can therefore be only Justified for the better quality of

their recuperations. The optimal settings for Methods IV and V are
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those which provide the best match Dbetween the innovations
sequence and its statistics. In Method VIa, c3 may be adopted as
the lowest possible value compatible with a nonnegative solution.
In Method VIa, c3 is first determined as explained; and c) is then
adjusted with the criterion of minimizing <c§(k)>, through a non-

negative solution.

Ideally, the parameter sensitivity of all tuning variables
should be low at their optimal values. Also, equivalent optimal

settings ought to be found for equivalent techniques.

Computational Requirements

All of the necessary data acguisition and treatment in SEC
(including any of the considered deconvolution techniques), may be
today solved in an average personal computer. It is rather
surprising that none of the commercially-available programs seem
to include instrumental broadening correction routines. (Possibly
due more to the difficulties associated to the estimation of

g{k,ky), than to the deconvolution problem itself).

Computer programs for all of the analyzed techniques were
written in FORTRAN 77 for a Digital VAX 11/780 computer, with VMS

operating system. Such program are available from the authors.

A SYNTHETIC EXAMPLE

This example was originally proposed by Chang and Huang (19),
and later attempted in Refs (1,5,6,7). However, previous com-

parisons were only qualitative because: a) the original values of
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0.0 |-
g (k) —100
005 —
150
0 6 L 0

FIGURE 2: Raw data.

u(k) utilized in Refs (19,1), were not available in Refs (5-7); b)
2
different baseline points were adopted; c) <oy(k)> was not expli-

citly evaluated; and d) different computers were utilized.

In this work, the discrete functions indicated in Fig. 2 and
in Table 2 are adopted. The uniform spreading g(k) was generated
from an analytical expression in Ref. (1), and u(k) was produced
by discretization of an analog plot in the same publication. Then,
y(k) was obtained by convolving u(k) with g(k), and finally z(k)
was produced by truncating that function to integer numbers. The
resulting z(k)} function differs slightly from that in Ishige et
al. (1). In all cases, 128 points were adopted for "chromatogram"

z(k), with nearly half of them corresponding to the baseline.
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TABLE 2
The basic raw data
x g{k)x10% | k ulx) y(x) z{k)] k ulkx) vix)  z(x)
- 2.676711| © 0 0 0 65 130.9872 92.126 92.
_ig 5.8§9173 . . . . 66 133.2089 96.170  96.
-18 12.23853} . . . . 67 131.3001 98.953  99.
=17 24.64538| . . . . 68 120.9485 100.k2 100.
-16 L7.68368| 28 . 0.0576 . 69 105.7882 100.58 101.
~15 88,6L4051 29 . 0.0932 . 70 95.21281 99.493  99.
-14 158.3154] 30 . 0.1k59 71 93.52926 9T.233 97.
-13 271.6703{ 31 . 0.221k . 72 97.0983k 03.899 9k,
-12 LW47.9086| 32 . 0.3257 . 73 106.4605 B89.593  90.
-11 709.5203| 33 . 0.4647 0O 74 108.1882 8h.h2h 8L,
-10 1079.863| 34 . 0.6439 1. 75 104.3981 78.518 T9.
-9 1579.066 35 0 0.8669 1. 76 92.29236 T72.020 72.
-8 2218.506| 36 0 1.1354 1. 7T T72.957T47 65.108 65,
-7 2994,669| 37 0.334343 1.4487 1. 78 5k.57h40 57.979 58.
-6 3883.877] 38 0.850432 1.80k0 2. 79 37.12463 50.845 51,
-5  4839.608{ 39 1.412603 2.1973 2. 80 26.10370 L43.91L LY,
-4 s794.,062 | Lo 2.332253 2.6252 3. 81 19.97195 37.37Th 37,
-3 666L4.759| 41 3.117099 3.0872 3. 82 16.17950 31.37h  31.
-2 T7365.698| L2 L.26071h 3.5884 L. 83 13.50800 26.014 26.
-1 7821.167| 43 5.092268 L.1419 L. 84 11.46L06 21.345 21,
0  7979.1657 44 5,510100 4.7700 5. 85 09.h6Lhs1 17.368 17.
1 7821.167) 45 5.766294 5.5045 6. 86 T.780245 1L.0L6 1k,
2  T7365.697| 46 5.291778 6.3858 6. 87 6.4984ko 11.31% 11.
3 6664.759| BT L4.685T772 T.4607 7. 88 L.9546L49 9.0952 9.
4 5794.062| 48 3.588146 8.7792 9. 89 k4.123708 T.3056 T.
5  L4839.608] k9 3.L4Thh2g 10.392 10. 90 3.L426783 5.8671 6.
6 3883.877| 50 L.220700 12.347 12. 91 2.908962 L.7099 5.
T  2994.669| 51 6.44L4266 14.694 15, 92 2.531518 3.7755 k.
8 2218.506( 52 10.28320 1T7.478 17. 93 1.920470 3.0172 3.
9 1579.066 ] 53 17.58364 20.750 21, obh  1.404380 2.3987 2.
10 1079.863| 5k 23.17089 2L4.556 25. 95 1.066105 1.8925 2.
11 709.5203| 55 26.83256 28.942 29, 96 0.820007 1.4781 1.
12 447.9086| 56 28.11250 33.943 3k, 97 0.303351 1.1399 1.
13 271.6703| 57 29.75348 39.569 Lo, 98 0 0.8658 1.
1L 158.3154{ 58 31.34853 L5.791 L6, 99 0.6L62 1.
15 88.64051| 59 33.12017 52.526 53. | 100 . 0.4729 0
16 L47.68368 | 60 38.L0052 59.630 60. | 101 0.3386 .
17 2L.64538 | 61 L6.50857 66.896 67. . . . .
18 12.238531 62 69.39350 Th.063 Th. . . . .
19 5.839173 | 63 98.20290 80.84L4 81, . . . .
20 2.676711| 64 121.4909 B86.951 87. | 127 0 0 0
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Parameter Adjustment

Methods I: For these techniques, solutions become increasingly
oscillatory as the iteration number increases. While in Method
Ia such oscillations eventually generate negative numbers;
higher positive peaks are produced through Method Ib, because of
an inherent characteristic of this technique. Starting with
Method Ia, the iterations were stopped at i=l, before negative
peaks appear in the solution. The same number of iterations were

adopted for Method Ib.

Methods II: In Method IIa, the 1lowest possible value for
B compatible with a non-negative solution, was selected. Then,

that same value was adopted for Method IIb.

Method TIII: m, was selected to correspond with the first (near

zero) minimum of the unboundl U(mﬂ function.

Methods IV: From the way y(k) was round-off to generate z(k),
one can interpret this last sequence as a noise-free signal con-
taminated by a noise v(k) of uniform probability density func-
tion, with 1limits at +0.5. In this case, it can be shown that
c%(k) = 1/12, and we adopt r = C.1. In Method IVa, $§=0 and we
choose (in first approximation), e¢1=1. For Method IVb, the first
stage was identical to Method IVa, and in the second stage

co was adjusted through the innovations matching test.

Method V: The same values for r and q{k) as in Method IVa were

selected.
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b) c3=2x107°

100

FIGURE 3: Recuperations via Method VIa, for different values of
c3. The optimal solution is illustrated in e).

Methods VI: Consider first the setting of c¢3 in Method VIa. At
the chromatogram tails, one expects u(k)=0, implying q(k)=0.
Therefore, relatively high values for r/q(k), for bylm) /oy (m),
and for c3 are to be expected. From an analogous reasoning, some
lower value of c3 should provide an optimal setting for the

chromatogram central peak region. Fig. 3 compares the original
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u(kx) function with four different solutions, of increasingly
higher values of c3. In Fig. 3a), c3 is too low for adequately
damping numerical errors, and a highly oscillatory solution is
observed. In Fig. 3b), the central peaks are well recuperated,
but the chromatogram tails remain oscillatory. In Fig. 3c),
c3y is sufficiently high to impede negative oscillations; but
while the tails are reasonably well solved, the two central
peaks are inadequately separated. In Fig. 3d), an excessively
high c3 1is' selected, thus severely distorting the original
information into a smooth and stable curve. In summary, the
following can be stated: a) an appropriate c3 adjustment for the
chromatogram peak produces intolerable oscillations in its
tails; and b) in a real situation where u(k) is unknown, the
best cy adjustment is the lowest possible value, compatible with
a non-negative solution. This last situation is verified in Fig.
3¢), that shall be considered the optimal solution for Method

Via.

By extension of the previous argument, an even better solution
might be produced by assuming C3(k) time-varying, with a maximum
value at the baseline, and & minimum at the peak. This idea is
exploited in Method VIb, and an estimation via this technique is
represented in Fig. 4b). The adopted c3(k) function is shown in
Fig. la), where (in order to appreciate the shape of its central
section), two different scales are utilized. Parameter cl was
determined as suggested above, i.e.: minimizing <o%(k)> through

nonegative solutions.
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c3=1x1075 c3(k) 2x10718
a)
Sx1078 ¢ +1x10°
p—
0
0
b)
I
| u (k)
0 100

FIGURE L: Recuperation via Method VIb. a) Adjustment function.
b) Optimal solution.

Solutions Comparison

The deconvolution results are indicated in Fig., 5, and in

Table 3.

Deterministic Methods I-III provide distorted (smoothed)

solutions, and are unable to recuperate the central peaks of the
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FIGURE 5: a-f) Recuperations via Methods I-VI, respectively.

original chromatogram. This is also the case of Method VIa.
Stochastic Methods IV-VI that include a time-varying r/q(k) ratio
adjustment or equivalent, produce improved estimations for u(k),
and fine details on the left and central sections of this function
are adequately reproduced. Even though not shown in Figs 5d,e),
Methods IV and V with q{k)=constant produce U{k) functions similar
to Methods I, II, IIT and VIa. This indicates that the enhanced

performance of stochastic methods is basically due to the "a
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priori” information on the expected solution, introduced through
q(x).

The better performance of stochastic techniques from the
point of view of the estimation of u(k), is indicated by their
lower €y and <c{2i(k)> values. Methods IT show good results with
regards to the recuperation of z{k); and this seems reasonable,
since the objective functional for such methods is closely related

2
to <oz(k)>.
DISCUSSION

Several deconvolution techniques were theoretically compared,
highlighting their differences with regards to process models,
objective functionals and adjustment requirements. This included a
novel technique, based on the Wiener filter in the frequency
domain. Also, a synthetic example was utilized to quantify the
different algorithms performance. The example considered an uni-
form spreading function, to allow the inclusion of Methods III and
VI. Even though not presented in this paper, other synthetic
examples involving nonuniform spreading functions were analyzed,

and the same general tendencies were observed.

One expects u(k) to be a continuous curve with a shape that
(although slender), 1is similar to that of the measured chroma-
togram. This "a priori" information on the expected solution may
be conveniently utilized in stochastic methods; and this is the
main reason for their enhanced performance. Any high frequency
noise in the measured chromatogram may be also "naturally" taken

into consideration by stochastic techniques.
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Short comments on each of the analyzed techniques follow.

# Methods I are conceptually simple, easy to implement, and pro-
duce similar recuperations. Method Ia is preferable to Ib however,
because: a) it is numerically more robust (1); and b) the negative
peaks produced at high computation times, aid in the selection of

the optimal iteration number.

* Methods II both produce nearly identical estimations; but

Method IIb is preferable to IIla, for its lower computation times

and memory.

¥ Method III is also simple, but restricted to uniform decon-
volutions. Through a filtering procedure in the frequency domain,
it provides an effective way of eliminating high frequency calcu-
lation noise from fi(k). Even though not mentioned before, this
same filtering technique could be also used to smooth z(k) and/or

g(kx), previous to the deconvolution operation (3).

*¥ Methods IV are possibly the most recommendable. Although con-
ceptually the most complex, they provide the highest adjustment
flexibility and an efficient input recuperation, at a relatively
low computational cost. Potentially, their adjustment could be
considerably simplified, by inclusion of an "automatic" adaptive

mechanism.

* Method V is, in many respects, equivalent to Method IV. For
example, they both provide nearly identical estimations, and allow

a finer parameter tuning through the innovations analysis. The
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main advantage of Method V with respect to IV is that it is con-
ceptually simpler, thus facilitating its computer implementation.
The disadvantages are, however: a) deconvolution times are more
than two orders of magnitude higher, thus making less practical
any Iinteractive operation; b) larger computer memories are
required; c¢) it is not simple to induce autocorrelation in u(k);
and d) the technique is unable to generate better estimations
through a two-stage procedure involving intermediate estimations

of q(k).

* Method VIa 1is equivalent to Methods IV and V with
r/q(k)=constant. In all these cases, the observed results are
similar to those of simpler deterministic techniques. For this
reason, Method VIa and Methods IV and V with the above-mentioned
simplification, should only be applied to low-demanding decon-
volution problems. Even though the frequency domain approach inhi-
bits the introduction of time-varying statistics into the ratio
¢y(m)/¢y(m), this limitation was relaxed in the heuristic Method
VIb. With a single adjustment function involving two coefficients,
this technique produces equivalent recuperations to Methods IV and
V. The main limitations of Methods VI are: a)y they are cir-
cumscribed to uniform deconvolutions; and b) no "physical"
interpretation aids in the specification of their adjustment para-

meter or function.
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